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INTRODUCTION

An n-dimensional linear space of functions defined on a real interval is
called a WT-space (weak Tchebysheff space) if no element has more than
n - 1 sign changes. If, in addition, no nontrivial function in the space has
more than n - 1 zeros then it is aT-space. T-spaces have proved to be useful
settings in which to effect the solution of numerous problems in approx­
imation theory. In recent years an effort has been made to extend these
results to families of spline functions and to WT-spaces, of which splines are
an example. Evidently this effort would be facilitated by a more thorough
understanding of the similarities and differences that exist between T-spaces
and WT-spaces, and of the nature of WT-spaces themselves. Basic work in
this area has been done by Sommer and StrauB, Stockenberg, Zalik, Zielke,
and others. It is the goal of this paper to contribute to this growing body of
knowledge.

Section 1 contains a brief list of definitions and propositions without
proofs concerning WT- and T-spaces, and may be safely skipped by those
who are already familiar with this theory. In Section 2 we introduce the
notion of "degeneracy" and identify various conditions under which one may
conclude that a WT-space is in fact a T-space. Section 3 deals with the zero
structure of elements in WT-spaces that contain lower dimensional T-spaces,
generalizing among others a theorem of Stockenberg on WT-spaces that
contain a positive element. In Section 4 we consider the special case of WT­
spaces with aT-space of dimension one less, and Section 5 concerns
vanishing points, points at which every element of a linear space vanishes.

In this section we record various basic facts about T-spaces and WT­
spaces. Most of the material can be found in the monograph [8] of Zielke,
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DEGENERACY IN WT-SPACES 101

where the appropriate references are also given. Readers already familiar
with this theory are advised to skip to Section 2.

Let U be an n-dimensional linear space of real-valued functions defined on
a subinterval of the real line. We say that an element u E U has k sign
changes if there exist points .1'1 < ... < Yk. I such that u(y;) U(Yi! ,) < 0
(i = I..... k).

DEFINITION 1.1. U is a WT-space iff no element has more than n - ]
sign changes. If, in addition, no nontrivial element has more than n - 1 zeros
then U is called a T-space. No continuity need be assumed.

PROPOSITION 1.1. U is a WT-space iff it has a basis juo... ., u ll 1 f. a
WT-system, such that detju j (x)l;; '? 0 for all X o < ... < XI/ ,. If U is a
WT-space then every basis for U can be made into a WT-system by reversing
the sign of at most one basis element. An analogous statement holds for T­
spaces and Tsystems save that the above determinants are all strictly
positive.

Obviously. if U is an n-dimensional T-space then for points xo..... XI/ ,

and for any numbers yo ..... .1'1/ I there is a unique U E U for which u(xJ = Yj
(i = 0..... n - I).

PROPOSITION 2.1. Every T-space on (a. b) or on Ia. b I contains a
positive function.

For a T-space on the half-open interval this may not hold.

EXAMPLE I.l 18, p.43]. U=spjx.x'--If is a WT-space on I~I, II
and aT-space on 1-1. 1) and (-I. I I but contains no positive function in
these intervals as every element vanishes either at both endpoints or else in
(-1. I).

PROPOSITION 3. I. U is an n-dimensional T space iff no nontrivial
element has more than n - I zeros and sign changes counted as follows:
zeros at endpoints. zeros with sign changes, and sign changes without zeros
are each counted once; zeros without sign changes are counted twice.

The following proposition is a direct consequence of Proposition 3. I.

PROPOSITION 4.1. Let U be an n-dimensional T-space on (a, b). If u E U
has n - ] distinct zeros and sign changes. then u has no zeros without sign
changes.

The following result, sometimes referred to as Krein's theorem 11, p. 30 I.
has been recently revised by Zielke 18, Theorem 6.51. We record here a
simpler version, which suffices for our purposes.
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PROPOSITION 5.1. Let U be an n-dimensional T-space on [a, b1and let
a <Xl < ... < X k < b be given with k <n - 1. Then there is an element
u E U with a sign change at each xi' such that u(xJ = 0 (i = 1,..., k) and u
has no other zeros in [a, b].

DEFINITION 2.1. A T- or WT-system {uo,"" Un-I} is called complete if
for each k = 0,... , n - 1, {uo,'''' uk! is a T- or WT-system, respectively. A
complete T-system is called aCT-system.

In particular, Uo is positive or nonnegative, respectively.

PROPOSITION 6.1. Any WT-space has a basis which is a complete WT­
system.

2

In this section we consider the question: When is a WT-space U actually a
T-space? As we shall see, the answer to this query depends on the domain of
V as well as on various properties of the space, including one which we call
the "T-rank"of V.

The symbol VUo·::::.:~~) denotes the determinant det{ui(xj)}~-\ for
functions UO, ... ,un _ 1 and points XO,...,xn -- I •

DEFINITION 1.2. A function J is adjoined to V iff VU {!} spans a T­
space of dimension dim V + 1. Similarly, J is adjoined to {u o,'''' Un_I} if
juo,"" Un-I'!} is a T-system. The term weakly adjoined is used when
UU {I} spans a WT-space or {uo,"" un-I,J} is a WT-system.

THEOREM 1.2. Let V be a WT-space on (a, b). If V has an adjoined
Junction then V is a T-space on (a, b).

Proof Assume that V has dimension n, J is adjoined to V, and VI
denotes the resulting (n + 1)-dimensional T-space. Suppose that u E V is
nontrivial and has n zeros. Since u E VI' we may apply Proposition 4.1 and
deduce that u must have n sign changes. But this contradicts our assumption
that V is an n-dimensional WT-space, hence, no such element exists and V is
a T-space on (a, b). I

Corollary 1.2 is immediate from Theorem 1.2.

COROLLARY 1.2. IJ {uo,"" Un-I} is a complete WT-system on (a, b) with
an adjoined function, then it is a CT-system on (a, b).

As another application of Theorem 1.2 we present the following result of
Krein and Nudel'man [10, p. 44].
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COROLLARY 2.2. Let !uo',,,, un f be a continuous Tsystem on la. b I and
suppose there exists elements 1'(".... v" E sp jUi fgsuch that

(1)

(2)

lip1 v/t)jv j • l(t) 0 (i = 0..... 11- I) and
I h

Vi(t) > 0 near b (i 0..... n).

Then {vo..... vIII is a CT-system on (a. b).

Proof It follows from (I) that lim('/,L'j(t)!vj(l)=O for O~i<j{,lI.

from which one easily gets the linear independence of \v" ..... v" f. Thus
{F.Vo• VI"'" vn ! is a T-system on la.bl for Ii ±1. For a~to < '" < {II <b
we have

l(ln)!Vn(tll)j
!

I

I (0..... 11
= I;V,,(t,,) 1/

til .... ~ t /I
: I f- o( I ) I as (II : h.

hence. Eye::::....::" I,);:? O. Similarly. /;VL~:::::;,)3 0 for k L.. .. n - 2. and
c:vo(to) 3 O. Since 1'0(1) > 0 for { near b. I; = I- 1. Moreover. u· II ..... /'/1 J} is a
complete WT-system on (a. h) with an adjoined function /'/1' so by
Corollary 1.2 ~l'o ..... l'lIf is a CT-systcm on (a.b). I

In general. Theorem 1.2 is false for closed and half-open intervals. as the
following simple example demonstrates.

EXAMPLE 1.2. Let U spjx. x 2
: on 10. I I or on 10. I). The function

f(x) == I is adjoined to U since no nonzero element of sp 1I. x. x 2 1 has more
than two zeros. however. U is clearly not a T-space on 10. liar on 10. [l.

A well-known property of WT-spaces that distinguishes them from T­
spaces is that of "degeneracy,"

DEFINITION 2.2. U is said to be degenerate on an interval I if there
exists a nontrivial element of V that vanishes identically on I. If U contains
such an element we simply say that U is degenerate; otherwise U is called
nondegenerate.

T-spaces and linear spaces spanned by analytic functions, such as
polynomials, are examples of nondegenerate linear spaces.

We now return to our original question. For the open interval an answer
was provided by Stockenberg [61 and by Zalik 171; namely, a WT-space U is
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a T-space precisely when U is nondegenerate and contains a positive
function (see also [4]). The situation is more complicated for the closed and
the half-open interval.

DEFINITION 3.2. A real-valued function f is said to have k separated
zeros if there exist points Xl < Yl <X2 < ... <Yk-l <x k such that f(x;) = °
(i= 1,... ,k) andf(Yi) *°(i= l, ...,k-l).

THEOREM 2.2 [6]. Let U be an n-dimensional WT-space with a positive
function. If n is even then no element has more than n - 1 separated zeros. If
n is odd then no element has more than n separated zeros and any element
with n seperated zeros vanishes to the left of the first and to the right of the
last zero.

Corollary 3.2 is easily deduced from Theorem 2.2, and provides an answer
to our query in all but one instance.

COROLLARY 3.2. Let U be an n-dimensional, non-degenerate WT-space
on [a, b] with a positive function.

(a) If n is even then U is a T-space on [a, b].

(b) If n is odd then U is a T-space on (a, b), on (a, b], and on [a, b),
but not necessarily on [a, b].

By way of illustration, we present a counterexample of Nurnberger and
Sommer [4].

EXAMPLE 2.2. Let U=sp{l,x(l-x 2 ),x 2
}. U is a 3-dimensional,

nondegenerate WT-space on [-1, 1] with a positive function. Although U is
a T-space on [-1, I) and on (-1,1], U is clearly not a T-space on [-1,1].

Our next goal is, therefore, to determine additional conditions on U that
will make it a T-space on [a, b] regardless of the parity of n. Noting that a
positive function generates a I-dimensional T-space, it is natural to
hypothesize that U contains a T-subspace of dimension greater than 1.

DEFINITION 4.2. A WT-space is said to have T-rank k if it contains a T­
space of dimension k but no T-space of dimension k + 1. T-rank °implies
no T-subspaces.

EXAMPLE 3.2. The space Sn.k(~l ,..., ~k) of splines of degree n - 1 with
simple knots at ~1'... , c;k (see [1, p. 18]) is a WT-space of dimension n + k
with T-rank n, as it contains the T-space of polynomials of degree <n - 1.
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THEOREM 3.2. Let U be a nondegenerate WT-space of dimension n on
Ia, b I. If U has T-rank? 2 then U is a T-space on Ia, b I.

Proof Suppose that u E U is nontrivial and has n zeros.
a ~ x I < ... < x n ~ b. Since U has positive T-rank, Proposition 2.1 implies
that U contains a positive function, say L By Theorem 2.2 and the
assumption of nondegeneracy, n must be odd, XI = a. and X n = b. Let
YI ,..., Yn-I be points such that Xi < Yi <xit I and U(Yi) '* °(i 1,..., f1-- 1).
We claim that exactly (n - 1)/2 of the numbers U(Yi) are positive and
(n - I )/2 of them are negative. Otherwise, for small A > 0, U + AV, or U - Ai'
would have at least 2(n + 1)/2 = n + I sign changes, a contradiction.
Assume, without loss of generality, that U(Yi) >0. Choosing a point
~ E (XI' x 2 ), define an element w in the T-subspace, which satisfies w(~) = 0,
w(x) >° for X E la, ~), and w(x) <° for X E (~, b I. This is possible by
Proposition 5. I. Then for small y> 0, u - yw has n sign changes in la, b I.
This contradiction proves the theorem. I

It follows from Theorem 3.2 that, since the WT-space in Example 2.2 is
not a T-space on I-I, II, it has no 2-dimensional T-subspace and, hence, has
T-rank 1.

3

Theorem 2.2 concerns the number of separated zeros an element of a WT
space with T-rank 1 can possess. A related result of Kimchi [21 can be
paraphrased as

THEOREM 1.3. Let U be an n-dimensional WT-space on la, b I with r
rank n - 1. If u E U vanishes on a subinterval of Ia, b I then u has but one
separated zero (i.e., the set of zeros of u is an interval).

We now proceed to generalize these two results to arbitrary T-rank.

THEOREM 2.3. Let U be an (n + k )-dimensional WT-space on la, b I with
T-rank n (n, k ? 1). Suppose that u E U is nontrivial and vanishes on a
subinterval of la, b]. If k is even then u has at most k + I separated zeros. If
k is odd then U has at most k separated zeros.

Proof Assume that u vanishes on (a, 13) c Ia, b I. The idea of the proof
will be to define a function v in the T-subspace V with n - 1 zeros in (a, fJ).
We then show that if U has more than the above-mentioned number of
separated zeros then for some y '* 0, U - yv has n + k sign changes in
contradiction to our assumptions on U. We distinguish between the following
two cases:

040/41/2 2
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Case I (n even). Assume first that k is odd and u has k + 1 separated
zeros (including (a, fl», that is, there are points a ~ XI < Yl <Xl < <
Yk <xk + I ~ b such that u(x;) = 0 (i = 1,..., k + 1) and u(y;) *- 0 (i = 1, , k).
Define sets

Al {y;E[a,a]:u(y;»O},

A 3 {y; E [fl, bJ: u(y;) <O},

A l {Yi E [a, a]: u(y;) <O},

A 4 {y; E [fl, b]: u(y;) >O}.

A; (i = 1, 2, 3, 4) are disjoint sets containing all of the y; in their union.
Hence, either Al UA 3 or A 2 UA 4 contains (k + 1)/2 elements. We may
assume the former is true. Now let v E V be defined as above with n - 1
zeros in (a, fl), all of which are sign changes, and let v be positive in la, a].
Since n is even, v will be negative in [fl, b]. Thus, for small y > 0, u - yv has
at least 2(k + 1)/2 = k + 1 sign changes in [a, b j\(a, fl), which in addition to
the n - I sign changes in (a, fJ) yields n + k sign changes, the desired con·
tradiction.

If k is even, the same argument is valid, except we must assume that n has
k + 2 separated zeros in order to derive a similar contradiction.

Case II (n odd). Again, suppose that u has k + 1 separated zeros if k is
odd, k + 2 if k is even. Then there are at least (k + 1)/2 positive u(y;) or
negative U(Yi) for k odd, (k + 2)/2 for k even. We define v E Vas in Case l,
noting that v will then have the same sign in [a, aI as in [fJ, b J in contrast to
the situation in Case 1. Then as before, for some y =F 0, u yv will have at
least n + k sign changes for k odd or n + k + 1 sign changes for k even, in
either case a contradiction (see Figs. 1 and 2). I

THEOREM 3.3. Let U be a WT-space of dimension n + k on [a, bI with
T-rank n (n, k ? 1). If u E U has k + 1 separated zeros then either all its
zeros are isolated or else k is even and u vanishes at both endpoints.

Proof. Suppose that u vanishes on (a, fl) cIa, b]. By Theorem 2.3 we
may assume k is even. If n is odd then there must be precisely k/2 positive

FIGURE I
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(n c 6, k c 7)

FIGURE 2
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U(Yi) and k/2 negative u(yJ Unless u vanishes on la. x I I and on [xk _ I' h I.
we may define an element v E Vas in Theorem 2.3 such that for small )' > O.
u ~ yv has n ~ I sign changes in (a. fJ) and 2(k/2) + I = k + I sign changes
in 1a. h 1\ [a. fJ I. a contradiction.

For n even the situation is similar except that in this case the sets A I U A.1
and A 2 U A 4 of Theorem 2.3 must each contain precisely k/2 of the Yi' I

Note that Theorem 2.2 and Theorem 1.3 are contained in Theorems 2.3
and 3.3 as the special cases n = I and k = 1. respectively.

4

This section is devoted to displaying some of the phenomena that arise
when a T-system is extended by an additional function to a WT-system.
Although expressed in terms of systems. one could reformulate these
assertions in terms of T-spaces of dimension n with T-rank n ~ 1. as in
Theorem 1.3. We begin with a result of Lapidot.

THEOREM 1.4 [31.
that juo.···.u n I.n
a ~ X o < ... < X n ~ h.

Let juO ..... un If hea T-system on la.hl and assume
is a WT-system on la. h I. If for some

U (, 0..... n ~ l;f)' =
xo"'" X n Un I(XO)'" Un I(X,,)

! f(x o) ... f(x,,)

then there exists a unique u E sp{ u;f 7J -I such that f =' u on [xo• x"l.

Theorem 1.4 has the following interesting corollary.

COROLLARY 104. If juo,.... U" I ~ is a T-system and juo..... un I.ff is a
WT-system on [a, h] then Uf = sp{uo.... , U" I' f~ is either degenerate or a T­
system on la, b I·
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Prool'. Either for all a" x < ... <x "b U( o•....n-t:f) >0 or else, by
~. ~ 0 If ~, XO, ....xn

Theorem 1.4, Uf is degenerate. I

We note further that, under these conditions, for all a <x) < ... <
xn- 1 < b, U(a.o.,:;:::.~;.l~{.b) > 0, for otherwise Theorem 1.4 implies that
fE sp{uo,"" un-d, in contradiction to the assumption that {uo,·.., un-I'ff
is a basis, hence linearly independent.

COROLLARY 2.4. Let {uo,... , un-d be a complete WT-system with Uo > O.

(a) If sp{Ui } ~ -) is nondegenerate then {Uo,..., Un _II is a complete T­
system.

(b) If SP{Ui}~-1 has an adjoined function then {uO,... ,un-1f is a
complete T-system.

Proof (a) Since Uo > 0 and sp{uo' u1 f is nondegenerate, by
Corollary 1.4, {uo' u)} is a T-system. This reasoning may be applied
successively to {uo,..., uj } (j= 1,..., n - 1) to get the desired result.

(b) If sp{ud~-l has an adjoined function then it must be nondegenerate,
hence, part (b) follows from part (a). I

Combining Theorem 1.3 and Corollary 1.4 we get Theorem 2.4.

THEOREM 2.4. If {uo,·.., un-I} is a T-system and {uo,••., un-I' f} is a
WT-system on [a, b] then either {uo,..., un _l' f} is a T-system on [a, b] or
else for some uEsp{ud~-I,f-u vanishes on a subinterval [a,fl)c[a,b]
and is nonzero in [a, b]\[a,fl]. If the latter holds thenf - u >0 in (fl, b] and
(-lrU - u) > 0 in [a, a).

Proof If {uo,..., un-I'f} is not a T-system then for some u E sp{ud~-t,

f=u on a subinterval of [a,b]. Let a=inf{x:f(x)=u(x)}, fl
sup {x: f(x) = u(x)}, then by Theorem 1.3, f =u on (a, fl), and f - u is
nonzero in [a, b]\[a, fl]. The above inequalities follow from the identity
f(x) - u(x) = U( O.... ,n-l;f )/U( O•...•n-I) for a <x < ... <x _ < fl. I

xO•... ~xn~_l'x Xop .. ,Xn _) 0 n I

5

We start this section with a definition.

DEFINITION 1.5. A vanishing point for a linear space U is a point esuch
that u(e) 0 for all u E U.

Clearly T-spaces can have no vanishing points. If, however, one multiplies
each element of aT-space by a fixed nonnegative function (1), then the result
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is a WT-space for which the zeros of ware the vanishing points. If U is a
nondegenerate WT-space then this process may be reversed, as we will see
later.

If U contains a positive function, or indeed one that is nowhere zero, then
U has no vanishing points. Under certain conditions the converse is also
true, as we show in Theorems 2.5 and Theorem 3.5.

Our first theorem of this section characterizes vanishing points.

THEOREM 1.5. Let juo"'" un II be linearly independent on la, b I. Then
¢E la,bl is a vanishing point for U=SpiUif~ I ifJ,for some set of points
a <X o < ... < x n- I <b such that

(
0, ... , n - I .)

U XO'''''X
n

_ 1 *0,
U ( . ~ ..... n .-- I .

¢.xo'·"'x; J.X;.I .... ·.\".
=0

(j = 0..... n - I ).

Proof One direction is obvious: the converse is proved by induction. As
the case n = I is trivial, assume validity of the theorem for all sets of n -- I
functions. Let YI""'Y n -2 be distinct points in ixo ..... x n If. then by
assumption

where

0= U ( 0...., 11 - 1 ) = ,\.1
!' ai ui(x;l
s'Yl'···'Yn-2'xj , i 0

(j = 0..... 11 - I).

a;=(_I)n-I-;U(O,.... i-:Li+L.... n-I).
s. YI ..... Yn 2

Since the determinant of this linear system, det iu;(xj ) f;: I. is nonzero. it
follows that ai = ° (i = 0,... , 11 - I). For each °<i <n - 1 (u o•· .. , ui I'

Ui+l' ...,Un_l~ is linearly independent on jXO"",xn I~' hence, there is a
subset {y~ ,..., y~ _2} for which

(
0, ..., i-I, i + I,..., 11 - I .)

U .. *0.
y~,... , Y;, 2

Thus the inductive hypothesis applies and we may conclude that ¢ is a
vanishing point for sp juo,· .. , ui _ 1 , ui + I , ... , un _J ~ (i = 0,... , n - I) and, conse­
quently, for U as well. I

Since lu o, , un _ I} is linearly independent iff points X o.... , xn_ 1 exist such
that UU;: :.:~ \) * 0, it follows that ¢ is a vanishing point iff
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U(,o .....n-I ) = 0 for all )'1"'" Yn-I in any set on which Juo,"" un-I} is
~.Yh •• '.Yn~] 1

linearly independent.
The next theorem says that if, for a fixed, finite set of points Y, every

function in a linear space has a zero in Y, then Y must contain a vanishing
point.

THEOREM 2.5 (cf. [6, Lemma 2]). Let F be a linear space offunctions
on a set X. Then for any finite subset Y c X with no vanishing points there is
an element of F that is nonzero on Y.

Proof. Assume that Y = 1yp... , yk! contains no vanishing points. The
proof is by induction on k. For k = 1 there is nothing to prove, so assume
validity of the theorem for sets of k - 1 or fewer points. Then, since
1yp... , Yk- d contains no vanishing points, there is agE F such that
g(y;) '* 0 (i = 1,..., k - 1). If g(Yk) '* 0 then we are done; otherwise, letf E F
be a function for which f(Yk) '* O. Such a function exists as Yk is not a
vanishing point. Choose a constant a '* 0 such that

max Iaf(Y;)1 < f!lin Ig(y;)I,
l<l<k-l l<r<k-l

then (of + g)(Yi) '* 0 (i = 1,..., k - 1) and (af + g)(Yk) = af(Yk) '* O. Hence,
af + g is nonzero on Y and the theorem is proved. I

Theorem 2.5 can be used as in [6] to prove a result similar to
Theorem 2.2, that if U is an n-dimensional WT-space then any element with
n separated zeros, none of which are at vanishing points, vanishes to the
right of the last and to the left of the first of these zeros. It then follows that
a nondegenerate WT-space on (a, b) with no vanishing points is aT-space.
Since both imply that a WT-space is a T-space, one may deduce that for a
nondegenerate WT-space, having no vanishing points is equivalent to having
a positive function. This was pointed out by Zalik [7]. For a degenerate
space this may be false, as the next example demonstrates.

EXAMPLE 1.5. Let uo(x) = x and

u1(x) = 1-14
=0,

xEl-l,I],

x E (-2, -1)U (1, 2).

It is evident that for all y '* 0, YUo intersects u1 at most once. Hence,
U = spluo, uti is a WT-space on (-2,2); U has no vanishing points,
however, it contains no positive element since every function u E U satisfies

sgn U!(-2.-l) • sgn U!(1,2l ~ O.

It turns out that such a counterexample as Example 1.5 is generic: Every
WT-space on (a, b) with neither vanishing points nor a positive element
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contains a function that vanishes on an interval that extends to an endpoint.
This is the content of Theorem 3.5, which is proved with the aid of the next
lemma.

LEMMA 1.5. Let juo'"'' un 1 f be a WT-system on (a, b) and let
~E (a, b). If U sp{u;}~ I is degenerate neither on (a.~) nor on (~, b) then
there exist points

a <Xo < ... < X n 2< ~ < X" I < b

such that U(,~;.........'~: I, ) > O.

Proof Since U is not degenerate on (a,~) there must be points

a<xo<"'<x" 2<.f<~ such that UL,::~::·.:::, ~.\,»O. Let u(x)=
U(Xl~::::~: ,1. x )' then u is a nontrivial element of Usince u(.f) * O. Moreover.
u cannot venish identically in (~, b) for then U would be degenerate on (~. b).
Hence, there is a point x" 1 in (~, b) such that u(x" 1) ~ O. It follows that
UC~;::.....'~n \) > 0 and so xo"'" x" 1 are the desired points. •

Lemma 1.5 figures prominently in 191, where the author shows, for
example, that for a continuous WT-space a weakly adjoined function is
continuous at every point ~ that satisfies the conditions of the lemma.

THEOREM 3.5. Let U be a WT-space on (a, b) such that for each
~ E (a, b) U is degenerate neither on (a,~) nor on (~, b). Then either U
contains a positive function or else U has a vanishing point in (a. b).

Proof Let {uo'"'' un I} be a basis for U which is a complete WT-system
(Proposition 6.1). If Uo > 0 then we are done, so assume that /lo(~) = 0 for
some ~ E (a, b). We will show that ~ is a vanishing point for U. Let k be the
largest integer such that Ul)(~) ... = ak l(~) 0 and suppose that k < n.
Since U is not degenerate on (a,~) there are points a < XII < ... < x k 1< ~

such that U(~;:..:...:~ I,) > O. Hence,

from which we conclude that Uk(~)) O. By Lemma I.5 there exist points
a < to < ... < tk 2< ~ < tk I < bfor which UC';:":"'~k I,) > O. For these points

yielding Uk(~) <O. Thus, Uk(~) = 0, contradicting the maximality of k, unless
k = n. This proves the theorem. I
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It is interesting to note that under the conditions of Theorem 3.5, no
element has more than n - 1 separated zeros, ignoring possible vanishing
points. Example 1.1 shows that Theorem 3.5 is not generally true when
applied to closed or half-open intervals. Corollary 1.5 follows immediately
from the proof of Theorem 3.5.

COROLLARY 1.5. Let U be a WT-space on (a, b) and assume that no
element vanishes on an interval that extends to an endpoint.

(a) If U has a vanishing point ~ E (a, b) then every weakly adjoined
function vanishes at ~.

(b) If {uo,..., Un -I} is any complete WT-system spanning U, then the
vanishing points for U are precisely the zeros of UO'

Corollary 1.5 is especially important in light of Proposition 6.1. Moreover,
it may be used to provide another proof of the following result.

COROLLARY 2.5 [8, p. 321. Every T-system on an open interval has a
basis which is a complete T-system.

Proof If U is a T-space on (a, b) then U is, in particular, a WT-space, so
it has a basis which is a complete WT-system, say {uo,'''' Un-I}' Since U is
nondegenerate and has no vanishing points it follows from Corollary 1.5b
that Uo > 0. The assertion now follows from Corollary 2.4a. I

Corollary 2.5 is not true for half-open or closed intervals. Indeed, the
space in Example 1.1 is aT-space on [-1, 1) with no positive element and,
therefore, no basis that it is a complete T-system. Additional counterex­
amples, for the closed interval as well, can be found in [8, Chapter 1OJ. We
end with a further application of the preceding results.

THEOREM 4.5. Let {uo'"'' Un-I} be WT-system on (a, b) with
nondegenerate linear span. Then there exists a nonnegative function w, and
functions Vo,'''' vn_ 1 such that Ui = wV i (i = 0,... , n - 1) and {vo,..., vn- 1 } is a
T-system on (a, b).

In other words, {uo'"'' un_I! may be "factored" into a T-system and a
nonnegative function whose zeros are the vanishing points of sp {u i} ~ - 1. We
now sketch the proof of Theorem 4.5:

By Proposition 6.1 we may assume that {uo,..., un-I! is a complete WT­
system. Since sp{U;}~-1 is nondegenerate, the set A = {x E (a, b): uo(x) >O}
is dense in (a, b). As in Corollary 2.4a, {u o,... , un-I! is a complete T-system
on A, hence, {l, v p ... , vn-I! is too, where vlx) = ui(x)/UO(x) (i = 1,..., n - 1),
x E A. Due to the presence of the function 1, the Vi have bounded variation
and are bounded on closed subsets of A n (a, b). Hence, right- and left-hand
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limits exist in A, so the Vi may be extended in an obvious way to the rest of
(a, b). For proofs of these statements the reader is referred to !8, especially
Chaps. 8, 11, 141. We note that, once this factorization has been effected. we
may produce a T-system by redefining OJ to be positive at each of its zeros.
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